
Holding Intruders Accountable on the Internet

Stuart Staniford-Chen
L. Todd Heberlein

Department of Computer Science
University of California at Davis

Davis, CA 95616

Abstract
This paper addresses the problem of tracing intrud

ers who obscure their identity by logging through a
chain of multiple machines. After discussing previous
approaches to this problem, we introduce thumbprints
which are short summaries of the content of a con
nection. These can be compared to determine whether
two connections contain the same text and are there
fore likely to be part of the same connection chain.
We enumerate the vroperties ti thumbprint needs to
have to work in practice, and then define a class of lo
cal thumbprints which have the desired properties. A
methodology from multivariate .9tatistics called princi
pal component analysis is used to infer the best choice
of thumbprinting parameters from data. Currently
our thumbprints require 24 bytes per minute per con
nection. We develop an algorithm to compare these
thumbprints which allows for the possibility that data
may leak from one time-interval to the next. We
present experimental data showing that our scheme
works on a local area network.

1 Motivation
Networked computer systems are under attack, and

the number of attacks is growing exponentially. In
1990, 252 incidents were reported to the Computer
Emergency Response Team (CERT). In just the first
six months of 1994, that number had grown to 1172.
In addition to the growth in the number of reported
incidents, the number of systems involved per incident
is grnwing - one recent incident involved 65, 000 sys
tems. [1]

Furthermore, it seems probable that most incidents
are not reported. For example, ASSIST, the Depart
ment of Defense incident response team, recently eval
uated the security level of one of their sites by lauuclt
ing automated attacks against it continuously for two
months. Only one person reported suspicious activity.
In a second example, a particularly security conscious
DoD site detected 69 attacks in 1992. After installa
tion of an intrusion detection tool, they detected 4100
attacks in just the first quarter of 1993. [2]

Why are so many attacks occurring? Studies reveal
computer attacks have similarities with many other
crimes: perpetrators are motivated by many things,
including greed, revenge, and peer pressure. [3, 4] As

1081-6011195 $04.00 © 1995 IEEE
39

the Internet continues to grow, and as more and more
commercial activity takes place over it, it would seem
likely that the problem will continue to worsen.

Studies also suggest that many intruders are de
terred by the perceived risks involved. One of the in
truder's greatest fears is losing his or her anonymity.
14]

Unfortunately, attackers can tal(e advantage of the
architecture of the Internet to hide their point of ori
gin, thus preserving their anonymity. Since many
hosts are insecure, intruders assemble a collection of
accounts on hosts around the world that they have
broken into. When conducting an attack. they log-in
through a series of such hosts before assaulting the
target. Since the machines in question are in different
administrative domains, with personnel who may not
know or trust one another in advance, and perhaps
do not even have the same legal system, this makes
it extraordinarily difficult to trace back the chain of
activity to its source. Clifford Stoll's experience is a
good example. [5]

Because of these problems, most incident response
teams such as CERT make little or no effort to find
the intruder. The result: an intruder still has all the
potential rewards with almost no risks.

The goal of our research in this an·a is to de
velop means by which intruders can be traced effi
ciently. This paper details our work so far. An impor
tant restriction which we impose on our approaches
is that they can be retrofitted to the existing Inter
net. Thus, we do not consider methods which would
require changes to the low-level network protocols, or
require a trusted computing base.

This means that the methods we produce will cer
tainly be imperfect. It is impossible t\J produce a
foolproof method to give correct security information
when the schenw must be implemented on hosts and
networks which have insecure operating systems and
insecure protocols. Nonetheless, we fed that some
tracing ability, however imperfect, is better than none
at all.

This paper provides an introduction to the prob
lem, a discussion of what possible solutions could look
like, a description of previous efforts, and a discussion
of thumbprinting. This is a technology we have been
developing to compare connections and thereby trace.

A thumbprint is similar to a checksum. One is stored
for each interval of each connection, and later used to
verify whether or not two connections had the san1e
content. We describe our algorithms and present some
early experimental results.

2 Approaches.
We first define terminology. \Vhen a person (or

a program) logs into one computer, from there logs
into another, and another, via network connections or
modems, we refer to that as an extended connection,
or a connection chain. The task of a tracing mecha
nism is, given some part of the chain, to identify the
beginning of it ..

In general we believe tracing mechanisms fall into
two classes. In the first class are methods which at
tempt to keep track of all individuals on the network
and account all activity to network wide user-ids. The
DIDS system developed at UC Davis is an example of
a system which did this for a single local area network.
f 6] We believe that, while this approach may be a good
idea for a wide area network which is under central ad
ministration, it is not feasible on the Internet with its
diversity of administrations, operating systems, and
security policies.

The second class contains reactive tracing nwcha
nisms. In this case, no global accounting of users is
attempted until a problem arises. Then the activity is
traced back to its source.

One class of reactive methods is host based solu
tions. These involve one tracing system per network
host. Each such system is capable of establishing
where a chain that crosses it goes next, and tracing
is accomplished by the hosts communicating in some
way to establish the whole extended connection.

:~ system along these lines is CIS (Caller Identifica
tion System)[7]. This system is applied in an attempt
to authenticate users about to log into a machine at
the end of an extended connection. Each machine
along the chain keeps a record of what the chain looks
like as far as it. When the user attempts to log into
the nth machine from the n - 1th machine, the 11th
machine asks it's predecessor for informati;m about
the chain so far. The nth machine then queries ma
chines 1 through n - 2 to check that their impression
of the connection chain agrees with that of machiu<'
n - 1. Only if all machines along the chain agree (and
inachine 1 is acceptable to machine n) does the login
proceed.

This recursive checking of tlw chain eliminates
some, but not all, of the obvious attacks on this kind
of scheme. It seems that it would be likely to induce
excessive delays in some cases however.

A different approach was actually used by the
United States Air Force to track an intruder and ar
rest him. [8] This technique, confusiugly called Caller
ID also, is controversial and required special pennis
sion from the Department of Justice, so it is probably
not a technique for general use.

Caller ID is based on the belief that if an intruder
hops through intermediate systems prior to making
an attack, there is a high probability that these sys
tems have known vulnerabilities which the intrud('r

40

used to access them. For example, if the intruder
hops from Ho -t H1 -t ... -t Hn, where Hn is the
target, H 1 through Hn-t contain at least one vulner
ability allowing access by an outsider. The Air Force,
having knowledge of the same attack methods that
their intruder did, simply reversed the attack chain
- breaking into Hn-1' examining the system tables to
see from where the intruder was coming, breaking into
Hn_ 2 , and so on. Eventually they identified the orig
inal point of entry of the perpetrator.

The drawbacks of this tracing technique include the
possibility that one cannot break into one of the inter
mediate system, one must pe1form the tracing while
the intruder is active, and one runs the risk of acci
dentally damaging intermediate systems. For many
practitioners, the legal situation is likely to cause se
vere problems also.

The difficulty with all such host-based tracing sys
tems is that, when an extended connection crosses a
host which is not running the system, accountability is
altogether lost at that point. This severely limits their
usefulness as a general purpose tracing mechanism on
the Internet. Since many hosts on the Internet are
insecure, the integrity of the tracing system on those
hosts cannot be relied upon. Some intruders almost
reflexively install Trojan horse versions of important
system binaries on hosts they penetrate. Even if most
hosts could be secured, the intruder community could
easily maintain a set of machines to launder connec
tions, just as they maintain anonymous remailers.

Such schemes may nonetheless be useful in single
administrative domains where measures are taken to
guarantee the integrity of the system.

The approach we discuss in the remainder of the
paper is thumbprinting. This relies on the fact that
the content of an extended connection is invariant at
all points of the chain (once protocol details are ab
stracted out). Thus if the network tracing system can
compute summaries (thumbprints) of the content of
each connection, these summaries can later be com
pared to establish whether two connections have the
same content. The technical feasibility of this idea will
be discussed later in the paper. The main drawback to
this approach is that it is still vulnerable to counter
measures. Firstly, the system must still be protected
from trojaning, though this is perhaps easier to do
since there arc fewer stations involved and they can
be special purpose. The second weakness is that dis
guising the content of the extended connection (such
as encrypting it differently on each link of the chain)
can circumvent the technology.

By far the most compelling advantage of the
thumbprinting approach is that it could be useful even
when only parts of the Internet use it. \Ve discuss this
point at greater length in a later section. We note that
since the thumbprints are very small, it is usually im
possible to deduce details of the connection content
from them. This limits their impact on privacy to
traffic analysis.

3 Thumbprinting
3.1 Idea

The idea of a thumbprint, which was originally pro
posed in [9], is a small quantity which effectively sum
marizes a certain section of a connection. The ideal
is a function of the connection which uniquely distin
guishes a given connection from all other unrelated
connections, but has the same value over two connec
tions which are related by being links in the same con
nection chain. This would allow a tracing system to
later compare various connections to find all pieces
of a chain. If all components of the system routinely
store thumbprints, then in the event of an intrusion
being detected, it is possible to trace the connection
back by comparing thumbprints from different hosts
or networks.

\Ve now turn to discussing how thumbprinting
could be implemented. Initially, we have concentrated
our attention on TCP connections, and specifically
interactive connections over the telnet or rlogin pro
tocols. We believe, hmvever, that many of our re
sults will extend in principle to machine driven data
transfers and (in some cases) to connectionless proto
cols such as UDP. (Though the performance require
ments for the thumbprinting system increase corre
spondingly). Also, we currently take the view that
lengthy connections should be broken up into time
intervals, and each interval separately thumbprinted.
Interval size is typically a minute.
3.2 Design Constraints
~ good thumbprint should have the following prop

erties.
It should require as little space as possible to min

imize storage needs for logH of thumbprints.
It should be sensitive; the probability that two un

related pieces of connection will be close together in
thumbprint space should be as small as possible. Of
course, if two unrelated pieces of connection happen
to have the same content then no tlmmbprint will dis
tinguish them. The most common case of this is idle
connections.

It should be robust, i.e. it should change as little
as possible when the connection gt'ts distorted by the
kinds of errors that are likely in practice.

Ideally, thumbprints should be additive. This
means that successive ones can be combined int.o a
thumbprint for a longer interval. This allows that
where successive tlmn1bprints do uot provide a clear
1·0111parison, they can be combined to produce a bet
ter signal. It also allows thumbpriuts of intervals of
different but congruent lengths to he compared.

Finally, it is essential that creating the thumbprints
not place an excessive load on tlw network compo1wnts
which do the work. It is useful but less importaut if
they are dJeap to compare.
3.3 Sources of Error

\Ve have identified the following sources of error.
Any scheme must cope with these.

1) Clock skew - thumbprints on different hosts may
not always start at quite the same time, and may not.
end at quite the same time either. This causes er
rors in comparing them since characters that in one

41

pl~e may be in the ~th minute of a conn~~ction may
be m the n + 1th rnmute elsewhere. It is essential
that synchronization errors be much smaller than the
thumbprinting interval.

2) Propagation delays - thumbprints may contain
slightly different data in different places because the
com~ections they a.re measuring are delayed by prop
agation times. This has a very similar effect to clock
~ke~ in moving some characters from one thumbprint
mg mterval to the next. In our experience the worst
problems are created by overloaded hosts rather than
by the network itself. Badly overloaded hosts may
pause for seconds or tens of seconds before transmit
ting data they have received.

3) Loss of characters. Since thumbprinting is based
on passive monitoring of connections rather than being
a party to them, the system cannot have access to
the error and flow control features of the transport
protocol (TCP). Thus it might lose some characters
(due to a buffer overflowing say) and not be able to
~·ecover ~hem. We have found that this is a problem
m practice.

4).Packetization variati?n· Thumbprinting at a low
level 111 the protocol stack 1s made difficult by the fact
that packetization, timing of packet transrnission, etc.
are not invariant at different points in the connection
dmin.

For these reasons, we .decided to rely solely on
the content of the connection after reconstruction up
through at least the transport layer. In the future
we hope ~o. study whether this is really necessary, or
whether it is better to rely on the error 1colerance of
the thumbprinting method introduced below to cope
with retransmissions etc.

An obvious contender for thumbprints is a check
sum such. a.s the CRC. These are very small, they are
very sens.1tive, they are d1eap to compute. The big
proJ;>lem is that they are not robust at all - any er
ror 111 the data used to make the checksum is likely to
completely change the value of it. They are also not
additive. Message digest algorithms have the same
drawbacks.

Other possibilities we considered and ruled out due
to sp~ce considerat~ons were c?mpression techniques,
and signature retrieval techmques (as used in the
search of large free-text databases). (10]

3.4 Applicability
In the short term, we see several applications in

which this kind of technology could be deployed al
most immediately.

1) In the cont~xt of distributed intrusion detection
systems such as DIDS(6], thumbprinting could allow
the system to relate activity which went outside the
domain b~1t ~hen re-entered. This might be important
when an ms1d.e attacker was seeking to disguise him
self as an outsider. Indeed we understand that Trident
Data Systems in conjunction with the Air Force Of
fice of Information \Varfare is presently incorporating
these ideas into DIDS.

2) Thumbprinting systems could be placed at the
places where a network for some site touched other
networks. This would allow the administrators of that

Huang
Highlight

Huang
Highlight

Huang
Highlight

Huang
Highlight

site to determine whenever their systems were being
used as a pass-through site. (Bob Pallasek of Lawrence
Livermore Laboratories suggested this application to
us).

3) Sites which were logically a single site, but phys
ically several networks, could use this means to corre
late activity between the different sites.

4) Law enforcement in pursuit of particular intrud
ers could use this technology at a variety of places
which were under suspicion as the likely source of an
intruder.

In the longer term, this technology could be a useful
component in a general internet tracing system (akin
to the trap-and-trace facility provided by the phone
networks). No such facility is presently planned. How
ever, as computer networks become increasingly used
for commerce, it may become necessary.

4 Local thumbprints
The thumbprinting technology we settled on we re

fer to as local thumbprints. Suppose the sequence of
characters to thumbprint is a 1, a2, ... , an, and further
suppose that we have a function</> which takes a char
acter as argument and returns a short vector of real
numbers; <P : A --> ~K. Then one possible kind of
thumbprint would be

1 "
T = - '°'¢(a;)

11~
i=l

(1)

T is a vector of short fixed length I<. This is a
local thumbprint in that it only depends locally on
the character stream. The advantages of this kind of
scheme are as follows. Robustness is good, since if
we lose a few characters, only thm;e terms in the sum
are affected. Additivity is obviously satisfied in that
the thumbprint for a combination of two character se
quences is the sum of the thumbprints for the individ
ual sequences. The thumbprint is small since it's just
a fow real numbers (in practice, some quantization of
them). It's cheap to compute since the function</> can
be stored in a lookup table. The remaining question is
one of sensitivity - can such quantities effectively dis
tinguish different connections? \Ve will address this
question empirically later in this paper.

In essence, equation (1) mandates studying linear
combinations of the frequencies with which each char
acter occurs in the particular interval of the particular
connection being thumbprinted.

A. number of variations on this scheme are possible.
For example, give a function 'I/!(a, b), we could define
a digram thumbprint at :;ome separation k by

n-k

T,p = ~ L 1/i(a;,a,+k)
11 - Ii' i=l

(2)

More complex schemes based on trigrams or higher
order combinations are also possible. It might appear
that such schemes would be more sensitive than the
single character scheme because they capture some in
formation about the order of the characters in (a;).

42

Ordering information is lost in the single character
scheme. We conducted some preliminary experiments
which suggested that this makes little difference in
practice and so we have focussed on single character
schemes. We hope to return to this point for more
careful experimentation in the near future.

4.1 Overview of Experiments
In order to test our ideas about thumbprinting

in a realistic setting, we developed C++ code to
thumbprint actual network traffic. This code presently
runs on a Sun 4/280 computer on one of our de
partmental ethernet LANs. The code uses the net
work interface in a promiscuous mode (through the
/dev/nit device provided in SunOS). The software an
alyzes each packet and associates it with the particu
lar pair of machines and ports it is traveling between.
It reconstructs the data flowing on each such connec
tion up through the transport layer (TCP). It divides
that data up into consecutive minutes, and saves the
frequencies with which each character occurs in that
minute for that connection. At present we restrict our
attention to rlogin and telnet connections (as deter
mined by the internet port number used). We also
consolidate the data flowing in both directions into a
single set of character frequencies. It would interest
ing to pursue whether the technique could be made
more sensitive by separating out the data according
to which direction it flowed in.

We find that, although the LAN r egment is fairly
busy because it houses one of our department's main
mail and file servers, the thumbprinting program typi
cally uses no more than a few percent of the processor
time on the machine it is running on.

Two points should be mentioned here. Firstly, we
mask all characters down to 7 bits since we have found
eight bit characters to be comparatively rare in the in
teractive connections on our network and it is conve
nient in the rest of the analysis to work with only 128
characters rather than 256. Secondly, we have found
that ASCII character 24 plays a peculiar role in our
data. This character is used by the telnet protocol as
part of its negotiation over which terminal type is in
use[ll]. Normally, this character is very infrequent.
However, in a very few of our connections, massive
munbers of these appear (tens or hundreds of thou
sands per minute). We do not presently understand
the cause of this, though we suspect an implementa
tion bug in some version of telnet. The resulting vari
ability in the frequency of this character means that
it receives significant weight in our analysis which we
think is undesirable. Therefore we set the frequency
of this character to zero, regardless of its actual value.

A typical experimental protocol is as follows. While
the thumbprinting software is running, we execute a
script which sets up an extended connection across
several machines and then causes data to flow back
and forth across the connection in a way that is de
signed to simulate a human rapidly issuing system
commands and receiving responses. The data is drawn
randomly from a previously saved file of activity. The
script types a line of characters at a rate similar to
human typing, then issues a burst of numerous lines

Table 1: Thumbprints in concept experiment

of data all at once. It then waits a random amount of
time (typically a number of seconds) before repeating
the cycle.

We arrange for the extended connection to cross the
LAN segment we arc monitoring several times. This
allows us to compare the thumbprints at those points
in the chain. The only difference between this set up
and a more realistic one where two geographically sep
arated pieces of the extended connection were being
compared is that we do not have to arrang<' for syn
chronization between the monitors.

The reason we injected our own sirrmlated comwc
tions into the network traffic was to make it easy to
find them again when we came to analyze the data,
and to allow us to control variabks such as how mauy
machines the extended connection crossed before re
turning to our monitored LAN.

In total we took about a week's worth of data. Some
of this represented our injected comwctions. but much
of it was unrelated activity by other users.

4.2 Concept Experiments
To give the reader some feel for the kind of data

we analyze, we present the following table (Table 1).
This was one of our Parly proof of concept experi
ments, and it differs from our cmrent setup in that it
is based on total counts of characters, not frequencies,
and it used a single {1.e. I< = 1) randomly chosen
thumbprint functiou. However. it illustrates several
important points.

The top row labels time in minutes. The other two
rows are the thumbprints obtained in two different
places on an extended connection chain during each
of those minutes. Notice that iu minutes 4 through
6. the tlmmbprints agree quite well. but not exactly.
Errors of one or two percent like this are quite cDm
rnon due to missed packets or synchronization errors.
The thumbprints i11 minute 1 do not agree well. This
too is very common at the b(•ginuing of a conuec
tion chain. As each successive link in the chain is set
up, its thumbprint is initially based on no data, while
thumbprints of earlier links of the chain are based on
some text (e.g. the command to log into the next ma
chine). The most interesting point is that minutes 2
and 3 also match very poorly. However, if these are
added together, tlwn the combi111"d thumbprint for thf'
top row is 13716.8, while that in the bottom row is
13598.3. This represents quite good agreement. \Ve
inspected the datastreams here and determined that
the cause was several hu·ge packets of characters which
in the lower row fell in minute 1, but were delayed du<>
to an overloaded host so that by the time they were
recorded in the upper row of the table, they fell into
minute 2. \Ve beliPve this kind of scenario is not u11-

common, and it illustrates the importance of having
thumbprints which are additive and tolerant of noise.
4.3 Which thumbprint function?

Given that we are using single character local
thumbprints, the question still arises as to which such
thumbprint is best. Given that the vector of character
frequencies for a particular period of some rnnnection
is f == (Ji, h,, ... , h), the thumbprint can he written
as a linear combination

L

Tj = L </>j(a)fa (3)
a=l

Thus we condense the vector of L charader counts
into a vector of [{ thumbprint components (indexed
by j). The question that must be addressed is which
linear combinations of the f; should be used?

Happily, statisticians have developed a machinery
for answering this kind of question known as princi
pal component analysis. Since this technique is well
discussed in textbooks [12, 13], and we do not have
the space for a full treatment, we will only describe it
briefly.

The aim of principal component analysis is to take
a series of vectors and find a set of linear combina
tions of the components which explains the maximal
proportion of the variance of the vectors. This is done
by computing tlw covariance matrix of the vectors,
and then finding its eigenvalues and eigenv4~ctors. The
eigenvalues are sorted by size. Then the eigenvector
associated with the largest eigenvalue represents the
linear combination of the data which has the most
variance, and th<' eigenvalue is that variance. The
eigenvector associated with the second largest eigen
value is the linear combination which explains the
maximal amount of variance after that associated with
the first eigenvalue has !wen removed. This continues
in the same pattern --- there are]{ principal compo
nents, each succe~,sive 011e accounting for less and less
of the variance, l 1ut accounting for all of it between
them.

This exactly a11swers our need. \Ve wish to use the
linear combination with the greatest variance, since
character frequencies, or combinations of frequencies,
which vary very little are unlikely to be useful in dis
tinguishing amongst different connections, while very
variable frequencies are the most likely to be different
in unrelated eo1111ections.

We obtained from our data sets a tot al of 28677
distinct connection minutes (excluding ones we had
injected for experimental purposes). For each of these
we formed the frequency vector (which has 128 compo
nents). \Ve then applied principal compouent analysis
to these vectors. The largest eigenvalues <'ere shown in
Figure 1.

Ideally, we could look at this pictur·~ and there
would be some obvious place to stop - the first N prin
cipal components would explain almost all the vari
ance, and we could ignore the ones after 1 hat. This is
not the case; the graph becomes very fiat after the first
few components. Rather arbitrarily, we d~~cided to use
the first I< == G components in this study. \Ve hope

L11 .. •ll'tl• .. 11tet ill ,,......,..c_,_.111A ... tr*

I
)

• • + +

.: ..
Figure 1: The largest 20 eigenvalues of the covariance
matrix of our samples of character frequency in net
work connections.

to study more carefully the impact of this decision in
future work.

The corresponding coefficients ai·e shown as a func
tion of ASCII character in Figure 2 for the first three
components.

I
i

'°""c .. 1_,_.lllftCIM

:-:-::-·-=· --

....... ----~---~.-,~.~-~.· ttl 11• "'
__.

Figure 2: The first three principal components. The
value is graphed for each ASCII character.

The first vector (which explains 28% of the variance
in our character frequencies) is clearly measuring how
many spaces (ASCII 32) there ai·e in the traffic versus
other characters. Succeeding vectors make little use
of the space frequency. It is striking that the statisti
cal procedure picks very different things to emphasize
thm1 humans might expect. Our expectation was that
most of the meaningful information was in the rela
tive frequency of letters of the alphabet. However, it
seems in fact to be more useful to work with punc-

44

tuation characters, terminal codes, and white space.
Letters of the alphabet are mainly treated as a block
(the lower case letters occur from ASCII 97 to ASCII
122).

We used these vectors as our choice of <f>(a) in the
remainder of our work.
4.4 Comparison Algorithm

Having created thumbprints of all the connection
intervals we need a procedure to compare them. This
has to distinguish when two connections are the same,
and when they are different. It is complicated firstly
by the need to cope with displacements of some char
acters across interval boundaries, and secondly by the
existence of noise in the data due to dropped packets.
We developed a procedure which seems to handle both
of these difficulties well.

Since the noise distribution is very difficult to char
acterize (because missed packets, by definition, are
missed), we work with the known distribution of un
related thumbprints and attempted to establish that
related ones are atypical if they are considered to be
drawn from a distribution of unrelated ones.

Specifically, we start with the [(thumbprint com
ponents Tk (C, t) for a particular connection C and
time interval t. To compare this with some other set
of thumbprints Tk(C',t), we form the quantity

01(C, C') =log (fl ITk(C', t) - Tk(C, t)I) (4)

The idea is that the product of differences between
the Tk(C',t) and the Tk(C,t) will be much smaller if
C and C' are related than if they are not. This will
make o1 (C, C') larger in magnitude than expected.

However, if successive thumbprints match over
time, that further increases our confidence that the
connections are the same. We wish to incorporate this
fact into our procedure.

We can consider the Tk (C, t) to be drawn from some
probability distribution Pk (T) of thumbprints of all in
tervals of all rlogin and telnet connections on the In
ternet. This in turn induces a probability distribution
for the '51, viz:

(5)

under the assumption that C and C' are independent.
Of course, we cannot know this distribution P(o),

but we approximate it by the following procedure. We
take our list of connection-minutes observed in our
data (excluding injections) and randomly draw two
of them. Then we compute o from them using the
above procedure as if they had actually been taken
at the same time. Doing this many times gives us
a histogram P'(o). Ours is based on a Monte Cai-Io
sampling of 107 differences. We take this as an ap
proximation to the true P. Now given this, we define
the statistic Pt (6 t) by

fo'
Pi(o1) =lo P'(x)dx (6)

Intuitively, Pt is (an approximation to) the prob
ability of observing a J as small as J1 or smaller by
comparing independent connection intervals. We re
fer to this as the significance of the comparison at time
t. A very small Pt implies a significant result.

Now, to agglomerate a comparison over time the
most naive procedure is to take the product of the Pt
for all the minutes in which we can compare C and
C'.

8

Pnaive(C,C') = l1P1(C,C') (7)
t=l

where we assume that t runs from 1 to s. It is natural
to think of Pnaive(C, C') as the probability that all the
thumbprints would be as close as they are if C and C'
were unrelated connections. This is not correct for
several reasons.

Firstly, in taking the product of the probabilities for
successive minutes, we are assuming independence of
successive thumbprint comparisons over time, which
is unlikely to be exactly the case even for unrelated
connections. It is not feasible presently for us to quan
titatively assess the lack of independence, and so our
approach is to make the approximation that successive
minutes of unrelated connections are independent, <Uld
then study how badly this fails when we apply the
whole comparison analysis to control data. We find
that although the assumption is not perfect, nonethe
less we are well able to distinguish control data from
rnnnections which really should match.

More importantly, 11nder the null hypothesis that C
and C' are independently and randomly chosen con
nections, the p1 are random variahles drawn from a
uniform distribution on [O, l]. Thus when we take their
product, the result is drawn from the distribution of
the product of s U(O, 1) distributions. This distribu
tion can be calculated analyticallly (see Appendix A),
and the result is

Thus we define

(- log.r)s-1
U 8(x)=--

(s - 1)!

[Pnaive
Pbasic = Jo [/8 (.r)d:i:

(8)

(9)

So Pbasic is the probability of /!naive being as small
as the observed value or smaller, under the hypotheses
of unrelated connections and independence over time.

This statistic still takes no account of the need in
some cases to add together successive thumbprints be
cause of leakage of characters from one interval into a
neighboring one. Our algorithm is as follows. \Ve com
pute p1 for each t. If Jlt < r, where the tolerance r is
some small value (10- 3 in this st.udy), then we imme
diately count this value oft as a good match. After we
have done this for all t, we go back through the data
and look for situations in which consecutive values of
t do not constitute good matches. We then combine
those thumbprints in pairs, and produce a combined
\'alue of t5 as

45

K

tS?) (C, C') =log (IJ J(Tk(C', t) EB Tk(C', t + 1))
k=l

- (Tk(C, t) EB Tk(C,t + 1))1) (10)

where the EB operation just represents the combina
tion of the thumbprints weighted by the number of
characters in each minute.

T(C, t) EB T(C, t + l) = n1T(C, t) + »t+iT(C, t + 1)
n1 +»1+1

(11)
Now, the t5l 2)s are not drawn from the same distri

bution as the t51s. However, we can again produce an
estimate of this distribution by Monte Carlo sampling
of summed differences of independent thumbprints
drawn from our data. This allows us, in a similar way

to before, to compute p~2) as the percentile point of

6l 2
) in its distribution. Thus p~2) is the significance of

the comparison of C and C' for the combined intervals
t and t + 1.

The question that then arises is; is the comparison
of the combined intervals t and t + 1 more significant
than the comparison of the two intervals taken sepa
rately? To answer this, the natural thing to do is to
compare p)2l, with

[Pt Pt+!
]J~l,2) =lo uz(x)dx (12)

which is our measure of how significant the comparison
is in the two intervals taken separately.

\Ve then adopt either pl2l or pl 1
•
2>, whichever is

the smallest. It is important to note that hoth of these
numbers are drawn from U(O, 1) under the hypotheses
of unrelated connections and independence in time.
The fact that they have the same distribution is the
justification for comparing them. We do this wherever
it is advantageous and the individual PtS failed to meet
the tolerance. Suppose we perform this comparison r
times. \Ve then have s - 2r- numbers p. Some of these

may be p 1s, some pl2
) s, and some p~ 1

'
2

) s. \Ve take the
product of all of these and compute

[TIP
Ppa.ir =lo us-Zr(x)dx (13)

This we then take as the significance of the full com
parison of C and C' over the s time intervals. For
convenience we look at

lpair = - log(Ppair) (14)

This number is always positive, large wlien the com
parison is very significant, and small when it is not.

We note again that since several approximations are
made in this development, this can only be considered
the logarithm of a probability in a rather approximate
sense.

We note that it would be straightforward to ex
tend these ideas to adding more than two consecutive
thumbprints together. We have not yet carried out
this analysis.

We make a last point; in practice when comparing
thumbprints of related connections, there is a signifi
cant chance that the thumbprints will be exactly the
same. This causes the analysis above to produce an
infinite answer. Alternatively, it is possible for J1 to
be so small that it was smaller than any of the val
ues used in constructing the Monte Carlo approximate
histogram i5t. This again gives an infinite answer. In
both of these cases, we i·efer to this as a dead hit at
time t. Thus the analysis produces two values: the
number of dead hits, and the significance lpair of the
observations which were not dead hits.

Generally, any dead hits are very strong grounds
for suspecting that the two connections have identical
content. lpair comes into play when the data are too
noisy to allow of this.

4.5 Tests of Thumbprinting
We begin by describing our control data-set. We

scanned through all the connections we had recorded
thumbprints for. \Ve excluded any which were delib
erately created by us as experiments, and any which
had less than five minutes worth of data in. We then
paired the connections randomly. Any pairs which in
volved the sa.i.11e set of machines, or which were closer
than an hour together in time were excluded in an
attempt to reduce the chance of accidentally compar
ing connections which had the same content. \Ve used
a total of 40000 pairings in the control. For each of
these, we a.r.plied our comparison methodology to four
minutes. {We excluded the first minute of the con
nections). We observed exactly one dead hit in one
minute of these comparisons. \Ve checked and found
that the character totals we1·e identical, and some de
tective work with these suggests that this was the last
minute of two unrelated connections which happened
in both cases to contain little more than a prompt,
and the word ''logout'. This kind of thing is bound to
happen occasionally.

The histogram of the obtained values of lpair is
shown in Figure 3 as the dotted line. The solid line is
the curve that would apply if successive values of Pt
were independent so that Ppair was distributed 1111i-
formly on fO, 1]. Clearly (as expected) this assumption
is violated and thus comparisons between unrelated
connections tend to be more significant than this as
sumption would allow. However, it is not so grossly
wrong as to make us abandon the natural comparison
suggested in and immediately after equation (12). We
also speculate that the extreme right tail of the control
histogram contains comparisons between connections
which chance to have some related data (a. risk wht•n
all data is taken on the same network).

We applied the same comparison procedure to four

46

I

Figure 3: Histogram of /pair for control data, together
with the theoretical distribution assuming indepen
dence in time.

Table 2: Number of trials and percentage of each num
ber of hits for the experimental runs described in the
text.

sets of injected data. In Run I, our extended con
nection began on toadflax, went to k2, and then went
back to toadfiax where both toadflax and k2 are within
our department. In Run II, the extended connection
went from k2 to toadflax to k2 and back to toadfiax.
This gave three legs of the extended connection that
could be compared. Thus there are two independent
sets of thumbprint differences for each injected con
nection. As for the control data, we looked at four
minutes worth of data in each case, after dropping the
first minute (which usually gives an unreliable com
parison).

These two runs gave similar results, so we combined
them. There were a total of 302 comparisons. The per
centage of trials with various numbers of hits is given
in Table 2. In all, 98.3% of the comparisons gave at
least one dead hit. Five comparisons were sufficiently
disturbed by noise as to give no dead hits. The val
ues for /pair in these cases were 36.49, 37.46, 37.76,
39.70, and 42.34. Comparison of these values with the
control histogram in Figure 3 makes it clear that they
are very large, indicating that the method clearly can
identify these connections despite the noise.

In our next experiments, we tested the method on
extended connections over long-haul networks. These
are harsh conditions, (but ones that are perhaps typi-

cal of intrusions). The delays between typing a charac
ter and seeing the echo were typically several seconds
over these chains. In Run III, the connection chain
went

toadflax-+ k2 -+ hclvellyn
-+ alps.cc.gatech.edu -+ k2 -+ toadftax

Here, alps.cc.gatech.edu is in Georgia while the rest
of the hosts are in Davis. \Ve compared the chain
as it left and re-entered toad.flax. All but three of
the 54 comparisons gave some dead hits. On those
that did not, the values of lpair were 22.74. 41.29, aud
44.31. Again, these numbers are w~ry far out into the
tail of the control histogram, although the smallPst
of these does cross with the most significant of tl1e
control comparisons.

The schema in Run IV was

toadftax-+ k2 -+ helvdlyn -+ po .. csc.liv.ac.uk
-+ alps.cc.gated1.edu-+ k2 -+ toadflax

po.csc.liv.ac.uk is in Liverpool, England. Only one of
the 28 experimental connections gave 0 dead hits, and
it had an lpair value of 28.09. Thus, even in this long
chain, we can successfully match 11p the endpoints of
the connection in all cases.

We also studied whether we could reliably pick our
injected connections out from our control connections.
For each pair of samplc>s from an injected connection,
we chose one of the pair and compared it to all the con
nections in our control ~.et. \Ve then assessed whether
it was more similar rn it.'s actual partner than to any
of the unrelated data.

To compare the value of two matches, it is con
venient to have a method to comlJiue the number of
dead-hits with the significance level where there is not
a dead-hit. Thus, we must give a ,;ignificance level to a
dead-hit. To do this, we looked at the significance level
of all of our comparisons on an individual, minute-by
minute basis. \Ve found that the highest significance
level achieved for a minute of comparison which was
not a dead-hit to be 13.82. \Ve therefore set the sig
nificance of a dead hit at 14. \\'e then combined all
significances into a sin!!;le m1mlwr which incorporated
the dead-hits.

For each of our iujeetcd connedio11s, we then com
puted its total significance in this 111<111uer, and the to
tal significance of comparing it with all tJw unrelated
control connections. ·we formed tlw ratio "R bC'twcen
the total significance of the correctly matched compar
ison, and the best of the unrelated co111parisons. Thus
we get one value of R for each iuject.ed conuecti011. If
things are working correctly R should be more than
one. Preferably quite a bit mon' than 1.

Table 3 tells the story. For eaeh group of runs, we
present the median value of 'R au<l the worst case value
of "R. The essential point is that in every case, the
comparison involving the two samples from tlw same
connection had a significance kvel at least twict' as
great as the best comparison of an injected conuectio11
to a control connection. The reader is n·mindcd that
the significance here is 011 a logarithmic scale.

47

Table 3: Cross control: ratio of significance of true
comparison with best of control comparisons.

4.6 Applicability Beyond Etherrn~t
While the thumbprint mechanism we describe in

this paper has many applications, we are focusing
specifically on the assigning of signatures l.o interac
tive login sessions. So although the total amount of
traffic crossing a large internetwork may be enormous
the portion of the traffic in which we are interested i~
'tuite small.

For example, W(' looked at the traffic statistics for
the NSFNET internetwork[14]. For November 1994,
the combined rlogin and telnet traffic of 1.024 x 1012

bytes, accounted for only 4.56% of the total traffic.
Distributed eveuly over the month, we find the data
rate to be 3.95 x 105 bytes per second. Furthermore,
if we use a machiue with an available 50 million in
structions per second, this would allow us to perform
126 instructions for each byte.

While the assumption that the traffic is distributed
evenly is unrealistic, the fact that a single, moderately
powered workstation could, in the steady state, ap
ply 126 in~tructions to every ~yte of telnet and rlogin
data crossmg the NSFNET 1s remarkable. Further
more, while the amount of traffic across th•~ NSFNET
doubled between November 1993 and November 1994,
the traffic for telnet and rlogin increased at only about
half that rate.

Similarly, a Tl data line can carry 1.9 >< 105 bytes
per second in total, while a T3 line carries 5.6 x 106

bytes 3)er second. If we make the assun tption that
only 5 Yo of these bytes are rlogin and telnet (as on the
NSFNET) then our 50 J\[JP machine dedicated to this
task has about 5200 instruction per byte on the Tl
line, and 178 instructions per byte on the T3 line.

These calculations are of course simplistic - they ne
glect the fact that some work must be dom' examining
headers of otlwr protocols to determine that they must
be ignored. \Ve are also not in a position t,,) assess the
capabilities of suitable network inteifaces. Nonethe
less, the fact that upwards of a hundred instructions
are available per byte on average in seve,·al contem
porary network settings is very encouraging as to the
applicability of this method, given an implementation
on a machine dedicated to the purpose.

5 Conclusions and Future Work
Our main result is that it is easily possible, on

an cthernct, to save summaries of interactive connec
tions which can lie stored in only a few t•~ns of bytes
per minute per connection. In the case 1vhere these
connections are a few minutes long and liave moder
ate data flows, it is then possible to compare these

http://alps.cc.gatecli.edu
http://alps.cc.yatech.edu
http://po.csc.liv.nc.uk

summaries later and identify whether two connections
have the same content or not with very low probabil
ity of error. This is true even when one of the sets of
data being compared has passed through a tortuous
route to Europe and back on the internet.

We are actively working to extend this result in
various ways. Firstly, we wish to establish whether
the methodology here is adequate when the connec
tions have very low rates of dataflow, and very high
rates. Secondly, we are still doing research to fine
tune the statistical algorithms to give the best per
formance possible. We are also studying what is the
best length of time to thumbprint over. Experiments
to date have been done with one minute divisions, but
we have found that many connections are very short
and so we wish to make the thumbprinting interval
short also.

We are also studying ways to break up the connec
tion into pieces that do not depend on time, but rather
on content based triggers. Success at this would obvi
ate the need to synchronize geographically separated
thumbprint stations.

Once this is done, it is our intent to build a pro
totype system to implement these ideas and make it
available to the Internet community. We anticipate
that this system, where implemented, will be capable
of reliably tracking intruders who do not take adequate
precautions to avoid it.

The main vulnerabilities of such a system will be,
firstly, parts of the system being replaced by Trojan
horses, and secondly, intruders encrypting their con
nections differently in each link of the extended con
nection chain. While both of these are within the ca
pability of the more talented members of the intruder
community, we believe that a tracing system such as
this could raise the entry price paid to become au in
truder, and, where deployed, would increase the risks
and inconvenience of penetrating computers for all in
truders. Such a system would not be a panacea, hut
might be a deterrent.

Acknowledgments

We thank Karl Levitt, Biswanath Mukherjee, Matt
Bishop and the rest of our colleagues in the Security
Group at UC Davis for helpful discussions on this pa
per. We also had useful input from Kevin Zeise and
Scott Wadell of the Air Force Office of Information
Warfare, and Bob Palasek of Lawrence Livermore Lab
oratories. We would like to thank Geof Staniford and
the University of Live11>ool, and Amarnath Mukher
jee and Ge01·gia Institute of Technology for the use of
facilities at those institutions in our long range tests.
Finally, we particulady wish to thank ARPA for their
support of this resea1·ch.

A Appendix
We calculate the probability density function (pdf)

of
Z = X1X2 •• • Xn (15)

assuming that the :i::; are distributed U(O, 1}.
Throughout, we take f(x) to be the pdf of x, and F(x)

48

to be the cumulative frequency distribution (cfd) of x.
To begin, we define

Y = log(z); y; = log(x;) (16)

so that
n

Y=Ly; (17)
i=l

Both Y and the y; have range (-oo, 0). We can easily
calculate F(y;) for each i, since

F(y;) = Prob(logx;::; y;) = Prob(x;::; eY•) = eY•

Then
(18)

F(Y) = [exp (L Yi) IT 4J; (19)
}L,y;$.Y

This integral can be effected by making the change of
variables

i=l

q; = Yi - Y1 Vi ::/: 1

(20)

(21)
(22)

If we denote the linear transformation defined in these
equations by M, then (19) can be rewritten as

F(Y) = 1_: eP det(M- 1)A dP (23)

where det(M- 1
) is the Jacobean of the variable trans

formation, and A is a factor coming from integrating
over the n - 1 variables q; (on which the integrand
did not depend). It is possible, though a little tricky,
to directly evaluate A and det(M- 1). It is easier to
sidestep this work by noting that, since M is a linear
transformation, det(M- 1) must be constant. A, on
dimensional grounds, must be proportional to pn-1•

Thus

F(Y) = C 1_: pn-leP dP (24)

where C is an unknown constant. This integral is a
standard form [15], and the result is

F(Y) ==Gey [~ (-1)"-l-i (n -i~)!Y;l (25)

The requirement that F(Y) = 1 at Y = 0 then fixes
the unknown constant C at

(-l)n-1
C = (n _ l)! (26)

Since Y = log z we can deduce the cfd for z as

F(z) = z ~ (-l);(lo~lz)i (27)
i=::O l.

Finally, differentiating this wrt z gives the pdf for z,
which we earlier called un (z)

un (z) = (- log z) n -1

(n - 1)!
(28)

From an implementor's perspective, it is easiest to use
this in the form of log F(Y) which is close to a lin
ear function in the region of interest and so can be
efficiently approximated as a lookup table with linear
interpolation.

References
(1] B. Fraser (CERT). Private Communication. 1994.

[2J K. Van Wyck (ASSIST). Private Communication.
1994.

(3) R. Bace. A New Look at Perpetrators of Com
puter Crime. In Proc. 16th Department of Energy
Computer Security Group Conference, 1994.

(4] P. Neumann and D. Parker A Summary of Com
puter Misuse Techniques. In Proc. 12th Na
tional Computer Security Conference, pages 396-
407, 1989

[5J C. Stoll The Cuckoo's Egg. Doubleday, 1987

(6] S. Snapp et al. DIDS (Distributed Intrusion Detec
tion System) - Motivation, Architectme, and An
Early Prototype. In Proc. 14th National Computer
Security Conference, 1991.

49

(7) H.T. Jung et al. Caller Identification System in
the Internet Environment. la Proc. ,/th Usenix Se
curity Symposium, 1993.

[8J S. Wadell. Private Communication. 1994.

[9) L.T. Heberlein, K. Levitt and B. Mukherjee. Inter
network Security Monitor: An Intrusion-Detection
System for Large-Scale Networks. In Proc. 15th
National Computer Security Conference pages 262-
271, Oct. 1992.

[10] C. Stanfill and B. Kale. Parallel Free-Text Search
on the Connection Machine System. Communica
tions of the ACM, 29:1229, 1986.

[11] M. Solomon and E. Wimmers. Telnet Terminal
Type Option. Request for Comments RFC 884,
1983.

[12] W. Krzanowski. Principles of Multivariate Anal
ysis. Clarendon Press, Oxford, 1988.

(13] C. Chatfield and A. Collins. Introduction to Mul
tivariate Analysis. Chapman and Hall, London,
1980.

[14) Statistics available by ftp from ftp.merit.edu.
1994.

j15] M. Abramowitz and I. Stegun, Editors. Hand
book of Mathematical Functions. Dover, New York,
page 71, 1965.

http://merit.edu

